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a b s t r a c t

Folding at different scales is ubiquitous in orogenic belts, and small-scale folds are commonly used to
constrain the geometry of larger-scale folds. Analyses of viscous multilayers of N equally-thick stiff layers
show that the rate of fold amplification and the dominant wavelength to layer thickness increase with N.
This suggests that large-scale multilayer folds would initiate earlier than small-scale minor folds in
a single layer or a few layers. How then do the latter amplify at a faster rate than the former to become
minor folds on the limbs of larger-scale folds?

To answer this question, analytical models of fold initiation in multilayers that contain stiff layers with
different thicknesses and viscosities were studied. The models comprise five alternating stiff/soft viscous
layers, with a thinner or thicker central stiff layer, in a soft confinement by either viscous half spaces or
finite layers against rigid frictionless platens. One or two maxima may occur in the amplification rate –
wavelength spectrum: if two, the stronger buckling instability may be either that of the multilayer or
a single layer. Early initiation of single-layer folds in a central thin layer is favoured if the multilayer is
narrowly confined, and if the layer is significantly stiffer than the adjacent stiff layers. Folds then develop
on two scales, creating potential ‘minor’ and ‘major’ folds. In models with a thicker central layer,
amplification rate decreases as the layer thickness increases. Unusually thick competent layers in
a confined multilayer do not act as ‘control units’ that enhance folding; instead they impede folding.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Folds are a ubiquitous feature of stratified rocks in orogenic
belts, and are seen on many different scales. One long-held method
used by structural geologists in the field is to use the asymmetry
and vergence of small-scale folds to indicate the geometry of larger-
scale folds (Fig. 1). In this paper, we address the question of why
small-scale folds, sometimes termed minor or parasitic folds,
initiate in multilayered rocks and are preserved in larger-scale folds
in fold belts. It was shown in early analyses of folding in viscous
media (Biot, 1961, 1965a; Ramberg, 1963, 1964) that a multilayer
comprising numerous stiff layers would fold with a stronger
amplification than a single stiff layer in the same host, and that the
buckling instability increases with the number of stiff layers. This
result has since been verified by many other theoretical and model
studies (Johnson and Fletcher, 1994; Mühlhaus et al., 2002; Schmid
and Podladchikov, 2006). A reasonable conclusion, therefore, might
be that relatively large folds affecting numerous layers would fold
(S.H. Treagus).
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more strongly than smaller folds affecting one or few layers.
However, this is not borne out by field studies, and the minor–
major fold rule referred to above and in Fig. 1. There would thus
appear to be a paradox: how do small folds of one or two layers
buckle with a strong enough instability to become the small-scale
folds or ‘minor’ folds preserved around the larger-scale folds?

Part of the answer to this paradox might be that the differences
in amplification between single and multilayer folds are not very
great. Schmid and Podladchikov (2006) clarify differences between
single and multilayer folding, presenting parameters such as
dominant wavelength and amplification normalized to the single
layer. They demonstrate that the strongest folding instability arises
where alternating stiff and soft layers have equal thickness. This
result is also inferred from Biot’s (1961, 1965a, 1965b) analyses that
treat multilayers as statistically anisotropic, as this is the arrange-
ment with the maximum anisotropy. In the Schmid and
Podladchikov (2006) model, with 10 stiff layers interlayered with 9
soft layers of the same thickness, bonded contacts, and a viscosity
contrast of 25, the maximum amplification factor (q) of the
multilayer folds, at their dominant wavelength to layer thickness
value, Ld/T, is 1.6 times the single-layer q value. This quantity (q)
occurs in a relation of the form
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Fig. 2. An enlarged photoelastic analogue model from Currie et al. (1962, plate 2, fig.
5), showing folding on two scales. Three rubber layers, the central layer twice the
thickness of the other two, in a gelatine matrix. Note folding on two scales in the
thinner layer which is within the zone of contact strain of the thicker layers, but not
vice versa.

Fig. 1. Schematic illustration of ‘minor’ folds in a thin single layer within ‘major’ folds
of a multilayer. A traditional field method in structural geology is to use the asymmetry
and vergence of minor folds to indicate the presence of larger-scale major folds.

S.H. Treagus, R.C. Fletcher / Journal of Structural Geology 31 (2009) 1340–1349 1341
1
Aj

dAj

dt
¼ qjDxxj (1)

where Aj is one of a set of amplitudes comprising a multilayer
eigenmode, q is the associated eigenvalue (e.g. see Johnson and
Fletcher, 1994), t is time, and Dxx < 0 is the basic-state rate of
shortening. If q is such that an amplification of 10 occurs in
a specified increment of shortening, a value that is 1.6 times as large
will produce an amplification of w40. In general, as in the present
paper, the eigenmode with the largest q is of chief interest.

Johnson and Fletcher (1994, see figs 6.11 and 6.12) obtained
much larger differences than this in amplification factor, q, for
a multilayer comprising 9 stiff layers alternating with 8 soft layers,
embedded in an infinite soft medium, where all the layers have free
slip interfaces. Despite a viscosity ratio of only 10, this multilayer
has qd w 6 times that of the single layer. So clearly there are factors,
here free interfacial slip, that have a much greater effect on buckling
than just the number of stiff layers in an alternating stiff–soft
multilayer with layers of equal thickness.

Johnson and Fletcher (1994) obtain numerical solutions for
selective amplification in low-amplitude folding for many exam-
ples of multilayers with different configurations of stiff and soft
layers and embedding medium. They demonstrate that the
strength of the folding instability generally increases with the
following: the number of stiff layers involved; increasing viscosity
ratios between the stiff and soft layers; where a multilayer is in
a soft ‘infinite’ embedding medium, rather than between rigid,
frictionless platens; and where there is free slip between layers,
rather than bonded contacts. This last difference is much more
significant for folding of a multilayer than for folding of a single
layer.

Stratified rocks will rarely be as regular as these theoretical
multilayer models, however. In a ground-breaking paper, Currie
et al. (1962) considered folding of sedimentary strata, and intro-
duced the term structural lithic unit (SLU) to distinguish packets of
multilayered rock that fold discretely and are self-confined within
a larger layered system. Typically, the SLU shows maximum folding
in the centre, either a single layer or a group of layers that the
authors termed the dominant member, and the SLU is bounded by
softer layers above and below. Such an arrangement will form the
basis of one set of analytical models considered in this paper.

In apparent conflict with the SLU concept, Price and Cosgrove
(1990, p. 321) suggest that folding in multilayers is generated from
control units, usually anomalously thick stiff layers in the multilayer,
which effectively fold as single layers, and dominate the folding. We
will test the theoretical validity of this concept.
In their classic analogue experiments, Currie et al. (1962) used
stiff layers of rubber of varying thickness, in softer, photoelastic
gelatine, to illustrate the change from quasi single layer to in-phase
multilayer folding, as the spacing of the rubber layers decreased.
Fig. 2 is one example. The photoelastic fringes demonstrate what
Ramberg (1962) called the zone of contact strain created in the
adjacent soft layers or medium by a stiff folded layer; he found the
zone to extend to approximately the initial fold wavelength (Ld) to
either side of the folding layer or layers. In Fig. 2, which is partic-
ularly relevant to this paper, the model comprises three stiff layers,
the central layer double the thickness of the other two. The thick
layer folded with a large wavelength, clearly influencing the folding
of the thin layers a distance of about half its wavelength away,
within its zone of contact strain. However, the thick layer is outside
their zones of contact strain for folding at a second, much smaller
wavelength. Thus the thick layer folds as a simple wave, whereas
the thinner layers show two different wavelengths, as these layers
fold approximately as single layers, but are also incorporated into
the longer wavelength multilayer folding. Although showing
folding of elastic materials, Fig. 2 demonstrates aspects of multi-
layer folding that we will investigate further in this paper, through
analytical modelling of folding instability in viscous multilayers.

Ramberg (1964) investigated fold processes in multilayers that
comprised combinations of thin and thick layers and varied
viscosity contrasts. He introduced the concept of different orders of
folding, the first-order being the largest scale, and discussed related
processes such as the modification of small, or parasitic, folds
around larger folds, minor and major fold relationships, and fold
vergence (Fig. 1). All these are now standard text-book methods for
field geologists. In this paper, we prefer the term scales of folding,
rather than orders, because of possible confusion between orders of
scale, noted above, and order of initiation or growth, which might
indicate the opposite. In this seminal paper, Ramberg (1964)
showed that in a non-regular multilayer, the stiffest layers will fold
most strongly, and that several stiff layers will fold more strongly
than one.

Johnson and Fletcher (1994) treat folding in sequences of layers
of different thicknesses that might simulate realistic stratigraphy.
Their models also show folding on two scales, with almost the same
amplification factor. The finite-amplitude result would be trains of
smaller and larger folds that grew at similar rates.

We return to the rule of field structural geology that opened this
paper: that the asymmetry of small or parasitic folds can be used to
indicate larger-scale folding. When considered in conjunction with



Fig. 3. Design of analytical models. (a) Model 1, a 5-layer multilayer confined in
a viscous half space (quasi-infinite). (b) Model 2, a 5-layer multilayer with a finite
confining layer against rigid frictionless platens (RFP), which makes a 7-layer ‘struc-
tural lithic unit’, termed SLU7. Stiff layers (thicknesses T2, T4, T6) are shaded. Interlayers
(T3, T5) and outer confining layers (T1, T7) are soft media, unshaded. Layers T2–T6 all
have the same thickness, whereas T4 is thinner. Models 3 and 4 are designed similarly,
but with T4 thicker than the other layers (defined in the text).
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theoretical modelling of multilayer folding reviewed above, we find
a paradox. Theory and modelling show that the folding instability
in a multilayer increases with the number of stiff layers, suggesting
that folding of numerous layers would be stronger than folding of
single layers on a smaller scale. However, in stratified rocks in
nature, for the field rule of minor and major folding to work as it
does, the smallest folds must initiate first, probably in one or a few
layers, and, in order to be preserved on limbs of larger folds, must
grow faster than the larger folds that involve more layers. Carrying
this argument to its conclusion, the largest-scale folding, affecting
perhaps the whole stratigraphic succession, will be the slowest to
amplify and grow. Such a conclusion would appear to run counter
to theoretical studies reviewed above that suggest that the larger
the number of stiff layers, the stronger the folding instability.

A resolution of this paradox is offered by Frehner and
Schmalholz (2006), who simulate, in numerical FEM models, the
development of small ‘parasitic folds’ in thin multilayers sand-
wiched between thick layers, 50 times as thick as the thin stiff
layers in the multilayer, but with the same viscosity. The large folds
developed from a prescribed sinusoidal perturbation, whereas the
small folds, with ‘wavelength’ w1/50th that of the thick layer folds,
developed from random interfacial perturbations, and are less
regular. The small folds will always appear in the hinge regions of
the larger folds, and provided folding of the thick layers does not
re-orient the thin layers away from the direction of shortening prior
to adequate fold amplification, they will develop over the full span
of the large folds. Frehner and Schmalholz (2006) most successfully
obtain small folds over the full span by reducing the ratio of initial
amplitude to layer thickness (A/H) of the thick-layer sinusoidal
perturbation, while retaining the scale of random perturbations for
the thin layers. They assert that such a reduction in initial pertur-
bation amplitude with layer thickness may be a common feature of
stratified rock sequences, where initial amplitudes are sedimentary
structures such as wave ripples of a characteristic size, causing the
initial A/H ratio to be much larger in thin than in thick layers. Based
on these assumptions, the numerical models of Frehner and
Schmalholz (2006) demonstrate this as one mechanism for the
growth of small ‘parasitic’ folds around larger ‘major’ folds.
However, their parasitic folds are mostly in thin multilayers, rather
than a single layer, and are not regular sinusoidal perturbations, so
we do not think they provide the best answer for the two scales of
folding idealised in Fig. 1, the focus for this paper.

Here, we are interested in conditions where small single-layer
folds can successfully grow within a folding multilayer, and where
the smaller folds might outpace the larger multilayer folds. We will
analyse multilayer folding on different scales, and investigate
variables such as multilayer configuration and confinement, layer
thickness and viscosity ratios, to determine which factors will
overturn the simple conclusion from early analytical models, that
multilayers generally fold more strongly than single layers.

2. Analysis of multilayer folding at different scales

In the preceding review, it was shown that multilayers
comprising alternating stiff and soft layers, confined between soft
viscous half spaces, will have the maximum buckling instability
where the layers have the same thickness. The strength of fold
amplification increases with the number of layers, always
exceeding that of a single layer. What we will investigate here is
folding in multilayers that are not so regular, and not always
confined by semi-infinite half spaces. Our models comprise three
stiff layers of varying thickness, separated by soft layers, and in
a soft confinement that is either a viscous half space or a finite layer
against rigid frictionless platens (RFPs) (Fig. 3). The latter is a model
for a structural lithic unit (SLU) after Currie et al. (1962), that we call
SLU7 because it comprises 7 layers in total (Fig. 3b). Additionally,
we restrict this modelling to welded interfaces, and Newtonian
viscous layers with two or three different viscosities.
2.1. The analytical method

The analysis only concerns wavelength selection in low-ampli-
tude folding, a subject first introduced into the literature of struc-
tural geology by Ramberg (e.g. 1962) and Biot (1961). A detailed
development of the relevant analysis, together with comprehensive
reference to previous work, as applied to folding of purely viscous,
homogeneous layers at small enough bulk rates of shortening that
elastic effects are negligible, is given in Johnson and Fletcher (1994).
In essence, as a volume of layered rock, so modelled, is subjected to
an arbitrary history of homogeneous bulk, or basic-state,
shortening, linearly independent components of the interfacial
perturbation, present on all layer surfaces are amplified. As inter-
faces reach slopes of w5–15�, linearly independent growth of
components breaks down, and the fold structure, in terms of fold
hinge positions, fold arclengths, and layer thicknesses, is locked in.
The analysis, carried out to first-order in interfacial slope, is a thick-
plate analysis applied to multilayer configurations.

Representing the amplitudes, at a given wavelength L, of the six
deformable interfaces of our three stiff layer multilayer as column
vectors, an arbitrary form of the multilayer can be decomposed into
these two forms

2
6666664

A1
A2
A3
A4
A5
A6

3
7777775
¼ 1

2

2
6666664

A1 þ A6
A2 þ A5
A3 þ A4
A3 þ A4
A2 þ A5
A1 þ A6

3
7777775
þ 1

2

2
6666664

A1 � A6
A2 � A5
A3 � A4

�ðA3 � A4Þ
�ðA2 � A5Þ
�ðA1 � A6Þ

3
7777775

(2)

Here, A1 and A2 are the amplitudes of the upper stiff layer,
whose thickness is designated T2; A3 and A4 are the amplitudes
of the central stiff layer, whose thickness is designated T4; and
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A5 and A6 are the amplitudes of the lower stiff layer, also with
thickness T2. Since the thicknesses and viscosities of the layers in
the multilayers considered here are symmetric about the central
stiff layer, these two forms do not interact – i.e. they are linearly
independent, in the case of uniform layer-parallel shortening.
That is, by symmetry of the configuration about the central layer,
the central layer must either have a pure fold form or a pure
pinch-and-swell form in any of the six eigenmodes, and each
eigenmode is linearly independent of the others. Here, we will
only consider the first form, in which the central stiff layer has
a pure fold form. For simplicity we may write the column of
amplitudes for this form as

2
6666664

A1
A2
A3
A3
A2
A1

3
7777775

(3)

The evolution equations for the amplitudes, to first-order in
slopes, lAj, where l¼ 2p/L is the wavenumber, are of the form

1

jDxxj
dA1

dt
¼ q11A1 þ q12A2 þ q13A3

1

jDxxj
dA2

dt
¼ q21A1 þ q22A2 þ q23A3

1

jDxxj
dA3

dt
¼ q31A1 þ q32A2 þ q33A3

(4)

In the approximation that the coefficients qij are constant, which
will be adopted here, the set of linear differential equations has
three linearly independent solutions, or eigenmodes, and the
general solution may be written as a sum of the eigenmodes

2
4A1ðjDxxjtÞ

A2ðjDxxjtÞ
A3ðjDxxjtÞ

3
5 ¼

2
664

AðIÞ1 ð0Þ
AðIÞ2 ð0Þ
AðIÞ3 ð0Þ

3
775eqI jDxxjt þ

2
664

AðIIÞ1 ð0Þ
AðIIÞ2 ð0Þ
AðIIÞ3 ð0Þ

3
775eqII jDxxjt

þ

2
664

AðIIIÞ1 ð0Þ
AðIIIÞ2 ð0Þ
AðIIIÞ3 ð0Þ

3
775eqIII jDxxjt (5)

where each column on the right-hand side is proportional to an
eigenvector, of which there are three, and qI, qII and qIII are the
corresponding eigenvalues. Note that this implies that a set of
initial amplitudes can be allocated to the initial amplitudes of the
three eigenmodes, so that

Ajð0Þ ¼ AðIÞj ð0Þ þ AðIIÞj ð0Þ þ AðIIIÞj ð0Þ (6)

j¼ 1,2,3.
Since the coefficients are functions of the wavelength, L, as well

as the thicknesses and viscosities of the layers, there is a solution of
this form for each L. Eigenvectors and eigenvalues of the matrix X
are determined here using the subroutine eig(X) in Matlab�.

The bulk strain dependence in (5) is expressed as commonly done
as though the magnitude of the bulk rate of shortening jDxxjwere
constant in time. In this case, the stretch equivalent to the bulk
shortening, but expressed as the complementary layer-normal
bulk stretching, is S ¼ expðjDxxjtÞ � 1. For an arbitrary history of
bulk shortening, we may replace the forms shown by SqI ; SqII ; SqIII ,
where S is now the path-independent, or shortening history inde-
pendent, cumulative bulk extension. This result only applies when
the layers are linear viscous media.
In general, at any wavelength, one of the eigenvalues will be
positive and greater than the other two, and with increasing jDxxjt,
its contribution to the solution will outstrip the others. We there-
fore principally characterize the solution in terms of the value of
this maximum eigenvalue, denoted simply as

q ¼ max½qI; qII; qIII� (7)

where all eigenvalues are taken as functions of L/T2, where T2 is the
thickness of either of the outer stiff layers. We speak of the function
q(L/T2) as the maximum eigenvalue spectrum.

The spectrum of this maximum eigenvalue will show one or two
peaks, at different L/T2, and, as with the definition of a dominant
wavelength for folding of a single layer, we may define a dominant
wavelength to thickness ratio, Ld/T2 and an associated eigenvalue,
qd. If there are two peaks, the lower pair will be designated (Ld/T2)0

and qd
0. When there are two peaks, cases in which qd and qd

0 are
comparable in magnitude will be of special interest. q is described
as the amplification factor by Johnson and Fletcher (1994, p. 205),
and qd is accordingly a measure of the amplification of the
dominant wavelength, Ld.

The eigenvectors are, of course, of equal interest, since they
describe the form of the multilayer structure that emerges as
selective amplification continues, but we will not devote space in the
paper to a detailed account of their numerical forms and variation.
The most salient fact is that the eigenvectors – i.e. the relative
magnitudes of the three amplitudes – associated with the locally
dominant modes will be of one of three types. In all cases, one
dominant mode has amplitudes of nearly equal magnitude. We
informally term this the multilayer mode (ML). The other mode,
locally dominant as a peak in the q, L/T2 – spectrum, corresponds to
a constrained single-layer mode (SL). Indeed, this is still a multilayer
mode, and Ld and qd for this mode may differ markedly from their
values for a single layer embedded in an infinite medium. If the
central stiff layer is thinner than the other stiff layers, this mode will
correspond to an amplitude A3 relatively much larger than that of
the other surfaces. If the central layer is thicker than the outer stiff
layers, an SL mode will express itself as relatively large and sub-equal
amplitudes of the outer stiff layers and low amplitude of the inner
stiff layer. Very approximately, these modes may be characterized as

2
4

A1
A2
A3

3
5
ðMLÞ

w

2
4

1
1
1

3
5

2
4

A1
A2
A3

3
5
ðSLÞ

w

2
4

0
0
1

3
5

2
4

A1
A2
A3

3
5
ðSLÞ0

w

2
4

1
1
0

3
5

(8)

We emphasize that all modes are multilayer modes, and it is
only exceptionally that a single layer can be so thin and sufficiently
separated from other stiff layers that its behaviour is quantitatively
close to that of an isolated single layer. As we will show, the SL
mode is favoured if the viscosity of the layer is significantly greater
than the other stiff layers.

To demonstrate the adequacy of the approximation, we plot
both the maximum eigenvalue and the geometric quantity

G ¼ A1 þ A2

2A3
(9)

as derived from the eigenvector associated with the maximum
eigenvalue. This is the ratio of the mean amplitude of the outer stiff
layer to the amplitude of the central stiff layer. The example in Fig. 4
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Fig. 4. q and G for one model (Fig. 3b design), with T1/T2¼ 4, T3/T2¼1 and T4/T2¼ 0.2.
The central stiff layer is twice as stiff as the outer stiff layers and their viscosity is 20
times that of the soft interlayers. The larger SL mode has a dominant wavelength
Ld/T2¼ 9 or Ld/T4¼ 45; the ML mode has Ld/T2¼11.9 or Ld/T4¼ 59.3. Hence w5
wavelengths of the dominant SL mode occupy every wavelength of the dominant ML
mode.
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Fig. 5. Results for Model 1A series, a 5-layer multilayer with central thinner layer
bound by a viscous half space. Viscosity ratio¼ 20. q spectra for different wavelengths,
L (normalized to the outer stiff layer, T2), where q is the dimensionless amplification
factor; peaks signify dominant wavelengths (qd, Ld) for single or multilayer folding.
Curves are drawn for thin layer values, T4/T2, of 1.0, 0.5, 0.2, 0.1 and 0.05. The 1.0 curve
has a single peak, the maximum for this series. The 0.5 curve has a shoulder, and the
0.2, 0.1 and 0.05 curves have two peaks, right indicating a stronger ML mode and left
a weaker SL mode.
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shows the clear distinction between the region about the
long-wavelength ML peak, for which G z 1, and the region about
the peak at small L/T2, the central layer SL peak, at which G z 0. If
the central layer is thicker than the outer stiff layers, the SL mode
will have G>> 1, and the quantity 1/G might be a better diagnostic.
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Fig. 6. Results for Model 1B series, a 5-layer multilayer with central thinner and stiffer
layer bound by a viscous half space. Viscosity ratios 20 and 40. q spectra for different
wavelengths, L (normalized to the outer stiff layer, T2), where q is the dimensionless
amplification factor; peaks signify dominant wavelengths (qd, Ld) for single or multi-
layer folding. Curves are drawn for the thin layer values, T4/T2, of 1.0, 0.5, 0.2, 0.1 and
0.05. The 1.0 curve has a single peak, the maximum for this series. The 0.5 curve has
a shoulder, and the 0.2, 0.1 and 0.05 curves have two peaks, right indicating a weaker
ML mode and left a stronger SL mode, differing from Fig. 5.
3. Models of multilayer folding on different scales: results

3.1. Model 1: 5-layer multilayer with central thin layer in viscous
half space

Model 1A comprises three stiff layers with thicknesses T2, T4 and
T6, separated by soft layers (T3 and T5), and bounded by viscous half
space (Fig. 3a). The stiff/soft viscosity ratio is 20. All layer thick-
nesses (T2, T3, T5, T6) are the same, except for the central stiff layer
(T4), which is thinner, with values T4/T2¼1, 0.5, 0.2, 0.1 and 0.05.
Fig. 5 shows q spectra for the series of models, with wavelengths
scaled to T2. The maximum (qd¼ 11, Ld/T2¼14.8) is for the multi-
layer (ML) mode of folding where T4/T2¼1. Nearby peaks with Ld/T2

of w12–15 are all for the ML mode, for decreasing values of T4/T2.
The range is for three equal layers spaced at unit distance apart, to
two stiff layers spaced at w2 units apart. This limit is closely
approached for T4/T2¼ 0.1, with the reduction to T4/T2¼ 0.05
having little additional effect. Note that there are two peaks of
identical height and shape at much smaller values of Ld/T2, which
are the single-layer (SL) modes for T4/T2¼ 0.05 and 0.1. If q were
plotted versus L/T4, they would coincide, giving SL qd w 8.2 and
Ld/T4 w 10.2. The experiments shown in Fig. 5 show that the SL
peak will never be larger than the ML peak. If we want such a result,
an additional rheological, effect must be introduced.

Model 1B is a series of experiments with the same variables as
Model 1A, except that we double the stiffness of the central thin
layer, so that h4/h3¼ 40, while h2/h3¼ 20. As before, T3/T2¼1 and
T4/T2¼ 0.05, 0.1, 0.2, 0.5 and 1. Fig. 6 shows that the maximum
folding amplification is again seen where T4/T2¼1, but now
qd¼ 14.2, and Ld/T2¼16. Stiffening the central layer therefore
enhances the ML mode, as seen by comparing Fig. 6 with Fig. 5.
However, what is particularly apparent in Fig. 6 is that even the
strongest ML instability (for T4/T2¼1), is only marginally greater
than the strongest SL instability for the thin central layer (where
T4/T2¼ 0.05 and 0.1). When T4/T2� 0.2, the SL mode of the central
layer has the larger qd than the ML mode, and so in these experi-
ments, small folds in the central thin layer will grow more strongly
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that larger folds in the whole multilayer, and have the potential to
become ‘parasitic’ folds. For example, for T4/T2¼ 0.1, we have SL
qd w 13.5 versus the ML qd w 10, a modest but important differ-
ence. The respective amplifications for 10% layer shortening are 3.9
versus 2.7, at 20% shortening, 15 versus 7.4, and at 30% shortening,
57 versus 20. These values are approximate, obtained from
exp(qdDxxt) and do not take into account layer-parallel shortening,
as in Sherwin and Chapple (1968).
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Fig. 8. Results for Model 2B series, a 5-layer multilayer with central thinner and stiffer
layer bounded by a finite soft layer (T1/T2¼ 3) and a rigid frictionless platen. Viscosity
ratios 20 and 40. q spectra for different wavelengths, L (normalized to the outer stiff
layer, T2), where q is the dimensionless amplification factor; peaks signify dominant
wavelengths (qd, Ld) for single or multilayer folding. Curves are drawn for thin layer
values, T4/T2, of 1.0, 0.5, 0.2, 0.1 and 0.05. The 1.0 curve has a single peak, not the
maximum for this series. The 0.5 curve has a shoulder, and the 0.2, 0.1 and 0.05 curves
have two peaks, right indicating a weak ML mode and left a very much stronger SL
mode.
3.2. Model 2: 5-layer multilayer with central thin layer and finite soft
bounding layers against rigid frictionless platens: SLU7 model type

In this first SLU7 model, we take T1/T2¼ 3: i.e. the bounding soft
layers are just three times the thicknessof the outer stiff layers (Fig. 3b).
Otherwise, Model 2 uses the same variables as Model 1, in order to
examine the differences between multilayers embedded within
a viscous half space and those with a finite narrower confinement.

Model 2A comprises three stiff layers with thicknesses T2, T4 and
T6, separated by soft layers (T3 and T5). Layer thicknesses (T2, T3, T5,
T6) are equal, except for the central stiff layer (T4), which is thinner,
with values T4/T2¼ 0.05, 0.1, 0.2, 0.5 and 1. This multilayer is
bounded by soft layers of thicknesses T1¼ T7, where T1/T2¼ 3. The
stiff/soft viscosity ratio is 20. The results in Fig. 7 show that the thin
central layer can now show a single-layer mode with larger qd than
the multilayer mode. The initial thinning of the central layer to 0.5
leads to a slightly larger ML qd than the T4/T2¼1 case, which is
always the maximum for the comparable viscous half space model
(Model 1A). For T4/T2¼ 0.2, 0.1, and 0.05, the SL mode has a slightly
larger qd than the ML mode, but in terms of finite fold growth, small
single-layer folds would probably grow at approximately the same
rate as larger multilayer folds. This is a different result from Model
1A (Fig. 5), with the same layers but in a viscous half space.

Model 2B is essentially the same as Model 2A, except that the
viscosity of the thinner central layer is doubled, so that h4/h3¼ 40,
while h2/h3¼ 20. It is directly comparable to Model 1B, except for
the finite soft confining layers against platens. Now, a quite
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Fig. 7. Results for Model 2A series, a 5-layer multilayer with central thinner layer
bounded by a finite soft layer (T1/T2¼ 3) and a rigid frictionless platen. Viscosity
ratio¼ 20. q spectra for different wavelengths, L (normalized to the outer stiff layer, T2),
where q is the dimensionless amplification factor; peaks signify dominant wavelengths
(qd, Ld) for single or multilayer folding. Curves are drawn for thin layer values, T4/T2, of
1.0, 0.5, 0.2, 0.1 and 0.05. The 1.0 curve has a single peak, not the maximum for this
series. The 0.5 curve has a shoulder, and the 0.2, 0.1 and 0.05 curves have two peaks,
right indicating ML mode and left SL mode which is only slightly stronger.
significant relative enhancement of the SL mode over the ML mode
is achieved (Fig. 8), with qd values of w13.5 for SL and w8 for ML
folding, for T4/T2� 0.2. Amplifications at 20% shortening are 13.5
and 5, and at 30% shortening, 49 and 11, for single-layer and
multilayer folding, a significant difference. Compared to Model 1B
(Fig. 6), which had the same layer variables but in a viscous half
space, this SLU7 model with T1/T2¼ 3 (Fig. 8) shows approximately
the same SL qd values for the central thin layer, but significantly
lower ML qd values for the multilayer mode, the effect of the
confinement. Thus, in this model we see the greatest potential, so
far, for developing stronger small-scale folding in one thin layer
than the larger-scale folding of the whole multilayer: i.e. minor and
major folds or parasitic folding.

In the next two models, we will specifically examine the effect of
varying the thickness of the soft confining layers (T1, T7) against the
rigid platens, on the folding of a multilayer with a thinner layer.

Model 2C is a variant of Model 2A, taking T4/T2¼ 0.2 for the
thinner middle layer, and now varying the thicknesses of the outer
soft layers (T1¼ T7) as T1/T2¼ 0.5, 1, 2, 3, 4, to 10. All stiff layers have
the same viscosity, and the stiff/soft ratio is 20, as in Model 2A.
Fig. 9 shows the q spectra and L/T2 values for this series. The
common left peak is for ‘single-layer’ behaviour of the central stiff
layer: note that there is no change with changing T1. At T1/T2¼1, the
SL peak acquires a small satellite that represents a multilayer mode.
As T1/T2 increases to 2, 3, 4, and 10, this peak increases, and
between T1/T2¼ 3 and 4, the multilayer peak becomes equal to the
‘single-layer’ peak, and for larger T1/T2, multilayer folding is the
stronger mode. The maximum ML qd for this model is w10, where
T1/T2¼10, which is almost the same value as for the same
multilayer in a viscous half space (Fig. 5).

Model 2D is essentially the same as Model 2C, except that the
thin central layer is now twice as stiff. (It is a variant of Model 2B.)
Fig. 10 shows the q spectra and L/T2 values for this series. The model
with T1/T2¼ 4 is also shown in Fig. 4, used to illustrate the analytical
method. The prominent central peak in Fig. 10 is, as before, that of
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Fig. 11. Results for Model 3A series, a 5-layer multilayer with central thicker layer
bound by a viscous half space. Viscosity ratio¼ 20. q spectra for different wavelengths,
L (normalized to the outer stiff layer, T2), where q is the dimensionless amplification
factor; peaks signify dominant wavelengths (qd, Ld) for single or multilayer folding.
Curves are drawn for thick-layer values, T4/T2, of 1, 2, 3, 4, and 5, increasing down-
wards. Note the dominant ML mode with qd values decreasing and Ld/T2 values
increasing with increasing T4/T2. Where present, the SL mode (lower left) is weak.
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Fig. 9. Results for Model 2C series, a 5-layer multilayer with central thin layer with
T4/T2¼ 0.2, and variations in thickness of the bounding soft layer, T1, against the RFP.
Viscosity ratio¼ 20. q spectra for different wavelengths, L (normalized to the outer stiff
layer, T2), where q is the dimensionless amplification factor; peaks signify dominant
wavelengths (qd, Ld) for single or multilayer folding. Curves are drawn for T1/T2¼10, 4,
3, 2, 1 and 0.5, decreasing downwards in the nested right-hand curves, with reducing
values of ML qd. The left peak is the SL mode, common to all the curves. The ML and SL
modes have similar strengths when T1/T2¼ 3–4.
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the single-layer mode, the ‘shoulder’ for T1/T2¼1 and the satellite
peaks are for the multilayer mode. In all cases, from T1/T2¼ 0.5 to
10, the qd for the SL mode is measurably higher than for the ML
mode. Thus, for all these models, we have stronger SL folding of the
central layer than ML folding, which would produce small ‘minor
folds’ on larger but weaker ‘major folds’.
101 100 101 102
0

2

4

6

8

10

12

14

L/T2

q

Fig. 10. Results for Model 2D series, a 5-layer multilayer with central thin and stiffer
layer with T4/T2¼ 0.2, and variations in thickness of the bounding soft layer, T1, against
the RFP. Viscosity ratios 20 and 40. q spectra for different wavelengths, L (normalized
to the outer stiff layer, T2), where q is the dimensionless amplification factor; peaks
signify dominant wavelengths (qd, Ld) for single or multilayer folding. Curves are
drawn for T1/T2¼10, 4, 3, 2, 1 and 0.5, decreasing downwards in the nested right-hand
curves, with reducing values of ML qd. The left peak is the SL mode, common to all the
curves and the stronger mode in all these models.
3.3. Model 3: 5-layer multilayer with central thick layer in viscous
half space

This set of models complements the Model 1 set (Fig. 3a), with
the same variables except that now we increase the thickness of the
central stiff layer (T4) so that T4/T2�1.

Model 3A comprises three stiff layers with thicknesses T2, T4 and
T6, separated by soft layers (T3 and T5), and bounded by viscous half
space. The stiff/soft viscosity ratio is 20. All layer thicknesses (T2, T3, T5,
T6) are the same, except for the central stiff layer (T4), which is thicker,
with values T4/T2¼1, 2, 3, 4 and 5. Fig.11 shows q spectra for the series
of models, with wavelengths scaled to T2. The highest peaks are for
the ML mode, showing a maximum qd for T4/T2¼1, and progressively
decreasing qd and increasing Ld, as T4/T2 increases. Thus, as the
thickness of the central stiff layer increases, rather than enhancing or
‘controlling’ multilayer folding, the opposite is found. The minor q
peak at L/T2 of w 6 that emerges for T4/T2>1 represents the weak
single-layer mode for the outer (thinner) stiff layers. There are no
circumstances in these models where single-layer folding could equal
or exceed multilayer folding, in strength.

Model 3B is a series of experiments with the same variables as
Model 3A, except that now we double the stiffness of the central
thick layer, so that h4/h3¼ 40, while h2/h3¼ 20. As before, T3/T2¼1
and T4/T2¼1, 2, 3, 4 and 5. Fig. 12 shows q spectra for the series of
models, with wavelengths scaled to T2. The suite of peaks with
qd¼ 13.2–14.2 are for the ML mode, having Ld/T2 values that
increase as T4/T2 increases. As the thickness of the stiffest central
layer (T4) increases, there is only a slight decrease in ML qd,
compared to Model 3A (cf Fig. 11), but nevertheless the multilayer
folding instability is strongest where T4/T2¼1. The minor q peak at
L/T2 w 6 represents the weak single-layer mode for the outer
(thinner) stiff layers, as in the previous model.

3.4. Model 4: 5-layer multilayer with central thick layer, in soft
finite bounding layers against rigid frictionless platens: SLU7

This second SLU7 model is configured similarly to Model 2,
Fig. 3(b), except that the central layer is thicker and we take
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Fig. 12. Results for Model 3B series, a 5-layer multilayer with central thicker and stiffer
layer bound by a viscous half space. Viscosity ratios 20 and 40. q spectra for different
wavelengths, L (normalized to the outer stiff layer, T2), where q is the dimensionless
amplification factor; peaks signify dominant wavelengths (qd, Ld) for single or multi-
layer folding. Curves are drawn for thick-layer values, T4/T2, of 1, 2, 3, 4, and 5,
increasing downwards and rightwards. Note the dominant ML mode with qd values
decreasing and Ld/T2 values increasing with increasing T4/T2. Where present, the SL
mode (lower left) is weak.
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Fig. 13. Results for Model 4A series, a 5-layer multilayer with central thicker layer
bounded by a finite soft layer (T1/T2¼10) and rigid frictionless platens. Viscosity
ratio¼ 20. q spectra for different wavelengths, L (normalized to the outer stiff layer, T2),
where q is the dimensionless amplification factor; peaks signify dominant wavelengths
(qd, Ld) for single or multilayer folding. Curves are drawn for thick-layer values, T4/T2, of
1, 2, 3, 4, and 5, increasing downwards. Note the dominant ML mode with qd values
decreasing and Ld/T2 values increasing with increasing T4/T2. Where present, the SL
mode (lower left) is weak.
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Fig. 14. Results for Model 4B series, a 5-layer multilayer with central thicker and stiffer
layer bounded by a finite soft layer (T1/T2¼10) and a rigid frictionless platen. Viscosity
ratios 20 and 40. q spectra for different wavelengths, L (normalized to the outer stiff
layer, T2), where q is the dimensionless amplification factor; peaks signify dominant
wavelengths (qd, Ld) for single or multilayer folding. Curves are drawn for thick-layer
values, T4/T2, of 1, 2, 3, 4, and 5, increasing downwards and rightwards. Note the
dominant ML mode with qd values decreasing and Ld/T2 values increasing with
increasing T4/T2. Where present, the SL mode (lower left) is weak.
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T1/T2¼10: i.e. the bounding soft layers are ten-times the thickness
of the outer stiff layers. Model 4 otherwise uses the same variables
as for Model 3, in order to examine the differences between
multilayers embedded within a viscous half space, and those with
a finite confinement.

Model 4A comprises three stiff layers with thicknesses T2, T4 and
T6, separated by soft layers (T3 and T5). These layer thicknesses
(T2, T3, T5, T6) are all equal, except for the central stiff layer (T4),
which is thicker, with values T4/T2¼1, 2, 3, 4 and 5. This 5-layer
multilayer is bounded by soft layers (T1¼ T7), with T1/T2¼10. The
stiff/soft viscosity ratio is 20. Fig. 13 shows q spectra for the series of
models, with wavelengths scaled to T2. The highest peak is for
T4¼1, which is the pure multilayer mode. As T4 increases, the ML qd

peaks significantly decrease, while the Ld/T2 values increase. There
is an approximate halving of the qd as T4/T2 increases from 1 to 5.
These results are a more exaggerated version of what was found for
the viscous half space (Model 3A; Fig. 11), because of the increasing
effect of the rigid platens as T4 increases. The weaker peak that
emerges with Ld/T2 w 6 for T4/T2>1 is the SL mode for the outer
stiff layers, as described for Fig. 11. This model with a finite
confinement again demonstrates that the central thick layer does
not ‘control’ or enhance multilayer buckling. However, for the
thickest layer in our series, the SL mode for the outer layers is only
slightly weaker than the ML mode, suggesting folds could grow
simultaneously on different scales, Ld/T2 w6 and w30.

Model 4B has all the same layer thickness properties as Model
4A, except that the viscosity ratio of the central thicker layer is now
doubled to 40. The q spectra are shown in Fig. 14. Again, we see
a significant drop in qd for the ML mode, with increasing T4; an
approximate halving of value as T4/T2 changes from 1 to 5, signi-
fying considerable dampening of the buckling instability. The
weaker single-layer buckling mode has the same properties as
described for Figs. 11–13, but in this series, remains always
considerably weaker than even the weakest ML folding. We would
therefore not expect to see fold growth on two scales, nor minor
and major folds.
4. Discussion

There are many variables that are likely to control folding in
multilayered viscous media and rocks. In this paper, we focus on
conditions that could lead to simultaneous folding on different
scales, such as a layer folding on a small scale within a multilayer
that simultaneously folds on a larger scale, as depicted in Fig. 1. The



Fig. 15. Sum of a pair of multilayer folding components, here the low-amplitude
eigenmodes at wavelengths for two peaks in the q-spectrum (SL and ML). The lower
figure shows visually distinct low-amplitude folding, and the upper figure after 10%
additional layer-parallel shortening. The layer configuration is that of Model 2B (Fig. 8),
with T4/T2¼ 0.2 and a central stiff layer having twice the viscosity of the symmetrically
disposed stiff layers. Viscosity ratios 20 and 40.
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chosen model is a 5-layer multilayer with alternating stiff
(competent) and soft (incompetent) layers in bonded contact, with
equal layer thicknesses except for the central stiff layer, which is
thinner or thicker. These 5-layer multilayers are either confined in
a semi-infinite soft medium (viscous half spaces), or within soft
layers of finite thickness bounded by rigid frictionless platens to
model a ‘structural lithic unit’ (Currie et al., 1962), a 7-layer unit we
call SLU7. The only other variables in our models concern the
central stiff layer: its thickness relative to the other layers, and its
viscosity.

We use a stiff/soft viscosity ratio of 20 for one set of models, to
represent the competence contrast during folding of competent
and incompetent rocks. This is a compromise between the ratios of
50 or 100 usual for classical fold theory and modelling, and the
lower ratios of <10 obtained from analyses of cleavage refraction
and conglomerate deformation (Treagus, 1999; Treagus and
Treagus, 2002). In the set of models where the thinner/thicker
central layer is stiffer, this is modelled by doubling the viscosity of
this layer so that the stiffer/soft ratio is 40 (a triple viscosity ratio
of 40:20:1).

We will first discuss the models that comprise alternating stiff
and soft layers with one viscosity ratio of 20. As noted in the
Introduction, the type of multilayer that buckles with strongest
instability and amplification is a bilaminate system of alternating
stiff and soft layers with the same thickness, confined in a quasi-
infinite soft medium (viscous half space). The greater the number of
layers, and the higher the viscosity contrast, the greater the
dominant fold amplification factor (qd). This is confirmed in our
first model, with Fig. 5 showing the maximum q peak for T4/T2¼1
(qd¼ 11.1, Ld/T2¼14.5). Such a model produces regular multilayer
folds on one wavelength scale. However, where the same multi-
layer is in a finite and much narrower confining layer (T1/T2¼ 3,
Fig. 7), the maximum multilayer fold amplification is not when
T4/T2¼1. Although the differences are subtle, the greatest q value in
Fig. 7 is when the central layer thickness is halved to T4/T2¼ 0.5; we
have qd¼ 8.25, compared to qd¼ 8.16 for T4/T2¼1.

In this confined model (Fig. 7), when the central layer is even
thinner (T4/T2� 0.2), the qd value for single-layer (SL) folding of the
central thin layer slightly exceeds that for the whole multilayer
(ML). Here, single and multilayer folds grow at almost the same
rate, but on different scales. In models with T4/T2¼ 0.2 and the
confining layer thickness (T1) is varied from T1/T2¼10 to 0. 5
(Fig. 9), we are able to identify where single-layer folding of the thin
layer amplifies more strongly than whole multilayer folding. The
cross-over from stronger ML to SL folding is between T1/T2 of 3 and
4. Where T1/T2> 4, ML folding prevails; where T1/T2< 2, the ML
mode is effectively suppressed and SL folding is dominant.

In models where the central thin layer is stiffer than the rest of
the stiff layers (three-viscosity models with ratios 40:20:1), the
results are somewhat different. This stiffening of just one layer has
the effect of increasing the dominant amplifications and wave-
lengths of the multilayer and single-layer folding modes. For the
viscous half space (Fig. 6), the ML mode has the strongest ampli-
fication of all when T4/T2¼1, as found for the two-viscosity models,
but now qd¼ 14.2 and Ld/T2¼16. However, when T4/T2¼ 0.1, the SL
mode has notably higher qd values than the ML mode (SL qd¼ 13.5,
ML qd¼ 10.2), suggesting folding on two wavelength scales, the
small SL folds amplifying more strongly than the larger ML folds.
The results for the confined models with a stiffer and thinner
central layer (Fig. 8) are similar, but the differences between the SL
and ML qd are even greater, because the confinement weakens the
ML mode but hardly affects the SL mode. Thus, for T4/T2¼ 0.1, we
have SL qd¼ 13.5 and ML qd¼ 8.

For all the models with a much thinner central layer that is also
stiffer, and especially when the multilayer is confined, small single-
layer folds will grow more strongly than larger multilayer folds.
These are the optimum conditions for producing folding on two
scales, in a manner that would allow the smaller SL folds to be
preserved as ‘minor’ folds around larger ‘major’ ML folds, as shown
schematically in Fig. 1. This can now be improved on by our
modelling. An example of two scales of folding is shown in Fig. 15,
the two components representing local maximum growth rates
determined by our analysis. The configuration is that of Model 2B
(Figs. 3b and 8), with T4/T2¼ 0.2. The lower figure shows the pair of
components, equivalent to SL and ML modes, at sufficient amplitude
to be visually distinct, and the upper figure shows the components
after 10% additional layer-parallel shortening. Here, the reduction in
wavelength with bulk shortening is not included. Although only the
first-order analysis is used here, folds with such slopes would have
reached the point where finite-amplitude effects would enter (see
for example Johnson and Fletcher, 1994, section 5.5).

A subsidiary aim in this paper has been to test the proposal of
Price and Cosgrove (1990), that anomalously thick competent
layers in a multilayer act as ‘control units’ and dominate the folding.
Accordingly, we also modelled 5-layer and 7-layer multilayers that
had a thicker central stiff layer, either with the same or double the
viscosity of the other stiff layers (Figs. 11–14). All the results here
have shown that the multilayer buckling is not ‘controlled’ (in the
sense of enhanced) by the thick layers. The opposite is seen,
whether the multilayers are confined in a viscous half space or in
finite confinement, and whether the central layer has the same or
a greater viscosity as the other stiff layers. As the central (stiff) layer
increases thickness, relative to the others, the maximum amplifi-
cation factors (qd) for multilayer folding decrease, while the
wavelengths increase. For example, in the half space models
(Fig. 11), qd¼ 11.1 when T4/T2¼1, but 8.6 when T4/T2¼ 5. In all these
thick-layer models, the single-layer mode qd values (now for the
relatively thinner outer stiff layers) are w5, lower than the
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multilayer values in all cases, all the more so when the central layer
is stiffer (Fig. 14). Only one experiment (Model 4A, Fig. 13), where
T4/T2¼ 5 (the thickest example), indicated the potential for weak
folding with similar amplification, on two scales. For all the rest, we
deduce that folds will develop and grow on only one scale, that of
the whole multilayer.

We now discuss these results in terms of multilayer folding in
rocks, and questions posed in the Introduction: such as why small-
scale ‘minor’ folds develop and are preserved in larger-scale ‘major’
folds, when it is known that a stack of many layers should fold more
strongly than a single layer. Stratified rocks are unlikely to be
regular alternations of competent and incompetent rocks with
identical thicknesses and just two effective viscosities; nor will
multilayered rocks be always confined in an incompetent medium
that can be approximated to infinite or a ‘half space’. Our models
have simple designs to test some existing concepts, and to seek
parameters that might ‘control’ multilayer folding on different
scales, as is seen in real fold belts. The models are relevant to
folding of rocks with irregular alternations of two or three lithol-
ogies, such as limestone/sandstone/mudstone, or quartzite/psam-
mite/pelite sequences.

The results suggest that an unusually thin competent bed, espe-
cially if somewhat more competent than other competent beds, can
fold more strongly than the multilayer stack, to develop the classic
structural features of minor and major folds idealised in Fig. 1. For
example, a thin quartzite within a layered psammite/pelite sequence
should initiate the strongest folds, taking on the classic asymmetric
geometry of minor folds around major folds as they become involved
in larger-scale but weaker multilayer folding (Fig. 1). In other cases,
multilayer folding, whether of a whole sequence of competent and
incompetent rocks, or packets (structural lithic units, Currie et al.,
1962) within it, may develop on several different scales that have
similar growth rates, with overlapping or interfering wavelengths.
Our results broadly support Ramberg’s (1962) ‘zone of contact strain’
that is approximately one fold wavelength deep; e.g. in Fig. 5, single-
layer folding parameters stabilise at T3/T2¼ T4/T2¼ 0.1, i.e. where SL L/
T¼ 10. However, in practice, the middle thin layers in our models
appear to behave as approximate single layers when the surrounding
soft layer is w0.8 times the SL wavelength.

Small-scale or single-layer folds that would potentially initiate
with a much smaller amplification factor than the larger multilayer
folds, are unlikely to grow successfully. Instead, they will be carried
by the multilayer folding into larger wavelengths folds. Small folds
that have developed to finite scale within larger fold structures,
such as those used by structural geologists to map larger-scale
structures, must have initiated with a stronger amplification than
the multilayer folds.

Finally, what is the significance of an unusually thick competent
bed in the folding of multilayered rocks? This, it was suggested
(Price and Cosgrove, 1990), would act effectively as a single-layer
‘control unit’ within the multilayer, that would dominate folding.
Our models show the opposite: that an anomalously thick stiff layer
will not fold as a ‘single layer’ to enhance folding, but will impede
multilayer folding, with each increase in thickness reducing the
amplification factor for the dominant ML wavelength (Figs. 11–14).
These effects are particularly significant for a finitely confined
multilayer, which is probably the more geologically relevant.

Given the discussion above regarding the role of thinner (and
perhaps stiffer) competent layers, and the required thickness of
adjacent incompetent layers to allow these layers to fold as inde-
pendent single layers, we suggest that unusually thick incompetent
layers might have a more significant control on multilayer folding
than unusually thick competent layers. This appears to be borne out
by our field observations on a small scale, and is being followed up
in further work.
5. Conclusions

In multilayers that are not made up of exactly equal thicknesses
of stiff/competent and soft/incompetent layers, folds can develop
and grow simultaneously on different scales. To develop small folds
around larger folds, with the characteristic changes of symmetry
and vergence of minor folds on major folds used by field geologists,
the small folds must have grown at a greater amplification rate than
the larger folds. Our viscous multilayer models with a central
thinner layer demonstrate that folds in the thin layer will initiate
with greater amplification than larger folds of the whole multilayer,
if the multilayer is narrowly confined, and/or if the thin layer is the
stiffest layer. Folds will develop on two scales, creating ‘minor’ and
‘major’ folds.

In multilayer models where the central stiff layer is thicker than
the others, we find that the strength of multilayer folding is
progressively reduced, as the layer thickness increases. Unusually
thick competent layers in a multilayer therefore cannot be said to
control the folding, or act as ‘control units’ in a multilayer; they will
actually impede the folding.
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